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A supplementary sample non-parametric 
empirical Bayes approach to some statistical 

decision problems 
BY RICHARD G. KRUTCHKOPP 

Virginia Polgtechlzic Institute 

SUMMARY 

When an estimating problem is routine, it is often possible to  consider the parameter 
being estimated as a random variable. The data obtained to estimate previous values of 
the parameter then contain information which can be used to advantage in estimating the 
present parameter. Besides these data it is assumed that there are supplementary estimates 
of the previous parameters, perhaps in the form of customer feedback. All the probability 
distributions are assumed to be unknown. The estimating procedure given here is shown 
to be asymptotically optimal, and by a Monte Carlo example to have good small sample 
properties. 

Consider the situation where a process, perhaps a machine, is routinely producing batches 
of items, say bolts. We assume that one batch parameter, A, is of interest, say the proportion 
of defective items in the batch. Since a parameter depends on many things, such as machine 
operator, machine adjustment, room temperature, humidity, etc., which are often uncon- 
trollable, one can assume that the parameter varies slightly and unpredictably from batch 
to batch. This being the case, one usually ignores information obtained from previous 
batches when estimating the parameter for the present batch. The parameter, by virtue of 
its unpredictability, may, however, be considered a random variable with an unknown 
probability distribution. If the distribution of the parameter were known, one would be in 
what is usually called a Bayesian situation. It was shown (Robbins, 1955) that there is 
sometimes sufficient information available from previous batches to obtain results which at  
least asymptotically supplant knowledge of the probability distribution. We will use this 
approach, called the empirical Bayes approach, and extend it to the situation where the 
batch information is of a non-parametric nature. As will become apparent, this non- 
parametric approach is often useful even when parametric information is available. To be 
specific, consider the case in which one takes a random sample of m bolts from the batch and 
counts the number of defectives. Since the total number of defectives, X, is a sufficient 
statistic for the proportion h of defectives in the batch one can use Xlm, the uniformly 
minimum variance unbiased estimator for A. 

I n  this example the form of the distribution of X can be considered known allowing one 
to find an estimator for h with desirable properties. As an example where the distribution 
is not known consider the case where the batch represents missile propellant and the 
parameter is thrust per pound. The sample might consist of several static test fiings. 
Unless one was willing to assume some form for the distribution one might simply give the 
average measured thrust as the estimator for h without giving its properties; the estimator 



may be biased since the firing was static and the thrust of interest may be the dynamic 
thrust. 

I n  order to obtain a non-parametric estimator, we will assume that there is supplementary 
information available. Consider the situation in which there is feedback from the purchaser 
of the batch of bolts. He conducted his own tests, and obtained his own estimate of A. 
Perhaps he drew a sample of r bolts and used the number of defectives divided by r ,  call it y, 
as his estimate. I n  the propellant example y might represent the average thrust obtained 
after several of the missiles were fired dynamically. All that is required of the estimator Y 
of the supplementary information is that it be an unbiased estimator for the parameter. 
It should be emphasized here that this is supplementary information available only after 
the estimate of h is given and, therefore, cannot be used to estimate A. This supplementary 
information is available, however, for many, if not all, of the previous batches. The values 
of y obtained for previous batches are not estimates of the parameter for the present batch 
and would usually not be used to estimate A. I n  spite of this, we will present an estimator 
which uses the values of X and Y from previous batches that has an expected mean squared 
error smaller than the variance of Xlm. 

As indicated in the introduction, the situation we consider is the following. The un- 
observable outcome A of a random variable A occurs according to the unknown distribution 
G(A). The observable outcome x of random variable X is obtained according to an unknown 
conditional distribution FA(x). At this point one must estimate A with, hopefully, a small 
squared error. After the estimate is made one is given the outcome y of a random variable 
Y which has an unknown conditional distribution HA(y). It is known, however, that 

and E(Y2)= JJy2dHA(y)dG(A) < co. (2.2) 

The situation has occurred rz times and as a consequence there is a vector A = (A,, A,, . . . ,A,) 
of unobservables obtained independently according to the distribution @(A), a vector 
x = (x,, x,, . . .,x,) of observations independently obtained from the distributions 

and a vector y = (y,, y,, ...,y,) of observations independently obtained from the distribu- 
tions HA,(y) (i= l ,2 ,  ...,rz). After this one obtains a value x from the distribution FA(%), 
where A is the unobserved outcome from the distribution G(A). Note that these should be 
labelled x,,, and A,,, but we will drop these subscripts as no confusion can result. 

It can easily be seen from the independence that the uniformly minimum variance 
unbiased estimator for A, if it  exists, is a function only of x and not x ,  y. The minimum mean 
squared error estimator, the Bayes estimator for a squared error loss function, is similarly 
not a function of x ,  y. The Bayes estimator will, however, be unattainable since G(A) is 
unknown, but we will obtain an estimator which is a t  least asymptotically Bayes by using 
x ,  Y. 

The Bayes estimator a,*(.) is defined as one for which 

E{a*(X)-A), = min E{a(X) -A),, (2.3)
a(.) 
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where the expectation is taken over all the random variables and a ( . )  is any measurable 
function of X. It can easily be seen that 

where var (AIX) is the posterior variance of A for given X. This is minimized when 

with a minimum mean squared error 

R = E{var (A I X)). (2.6) 

If we assume that E(A2)= Jh2dG(h)< c ~ ,  (2.7) 

then R < c~ and the difference between the mean squared error for any estimator a ( . )  
and R is 

which is called the regret in using a (  ). Since the Bayes estimator E ( ~ x )cannot, in general, 
be found without knowledge of both G(h) and FA(x), which are unknown to us, we will 
attempt to find an estimator which is a function of Z = X, Y as well as X for which 

lim r(a) = lim E[{a(Z, X)  -E(AlX))2]= 0. 
n+m n+m 

Equation (2.9) is the definition of asymptotic optimality of a sequence of estimators a(Z, X). 
It should be noted that each estimator in this sequence is estimating a different parameter. 
That is, a(z,, xi+,) estimates hi+,, whereas a(zj, xj+,) estimates hj+lwhere 2, = (X,,X,, . . . , 
Xi,Yl,Y2, &).. . a ,  

Since r(a) is an unconditional expectation, we must be careful to take expectations over 
Z = (XI, X2, . . . ,Xn, Y1,Y2, . . . ,Yn) as well as over X and A. The introduction of Z does not, 
however, require the redevelopment of R or r(a) since by assumption, X and A are inde- 
pendent of Z. At this point we will simplify matters by considering only discrete X,  i.e. 
dFA(x)= on some countable set of values of x. The continuous case has been treated PA(%) 
in my Columbia thesis. 

In  order to define the function $,(z; x) which will be our choice of a(z; x) we let 

n 
and mn(z; x) = 2 &xi, x). 

i=l 

2 G(xi, x) yi if m(z; x) > 0 ,
We now define $,(z; x) = 

Before continuing, we present an important equality which is essentially Theorem 1 of my 
thesis, namely E(Y1x) = E(Alx) ass. (2.13) 

For E(Alx) = E{E(.YIA)IX= x) a.s. 



The second step is obtained by assuming that X and Y are conditionally independent, i.e. 
the joint distribution of X ,  Y, A is given by F'(x) HA(y)G(h). The third step uses integration 
with respect to A only. The assumption that  E(A2) < co is sufficient to ensure that this 
interchange in order of taking expectations is permissible. 

When m,(z; x) = m > 0, $,(z; x) is simply the average of m independent unbiased 
estimates of E(Y lx), which equals E(A1x). Therefore if we let 

we obtain E{$,(Z;x)lm, = m > 0 ,X = x} = $(x) (2.16) 

1
and EL{$,@; x)-$(~))~1m,= m > 0 ,X = x] = -var(Ylx), (2.17)

m 
while E{$,(Z; x)lm, = 0 , X  =x} = 0 (2.1 8) 

and E[{$,(Z; x)- $(~)}~lm,  = 0, X = x] = $2(x). (2.19) 

Iterating the expectation in (2-8), we obtain, after some manipulation with conditional 
expectations, that  

~ ( $ n )= E{$n(Z; X)  -$(x)12 (2.20) 

Note that since both expected probabilities cannot exceed unity the quantity inside the 
outer expectation is dominated by var ( YI X )+qY(X). This, however, equals E(Y2I X),  which 
has finite expectation. 

Now prob {mn(Z; x) = m) is the probability that  in n independent trials with probability 

for success there are exactly m successes. Therefore, 

prob {m,(Z; x) = m} = (1){P(x)Im (1 -P ( X ) ~ - ~  (2.22) 

for any Z such that  m,(Z; x) = m. From this we obtain 

E[prob {m,(Z; X )  = 0)IX = x] = (1-P(x)Jn 

and therefore lim E[prob {m,(Z; x) = O}IX = x] = 0 a.s. (2.24) 
n-+m 

Also E [ i Lprob{mn(z;X) = m } l ~= xI (2.25)
,=1m 
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Therefore X)  = m}X11 = 0 a . ~ .  (2.26) 

Using (2-24), (2.26) and the remark above we obtain by the Lebesgue dominated con- 
vergence theorem that, as n -+ co,lim r($,) = 0. Thus the risk of $,(z; x) attains the Bayes 
risk as n increases and therefore $,(z; x) is an asymptotically optimal estimator. 

Before relating the results of the previous section to an example, we will consider the 
unrealistic assumption which will later prove to be of practical importance. Consider the 
assumption that the mean of the posterior distribution of A for given X = x is a linear 
function of x. That is, E(AIX) = a + p X .  (3.1) 

Note that this is, in general, not true. Thus in the binomial example it is easily shown 
(Robbins, 1955) that 

where Ps(t) is the marginal probability that there will be t defectives found in a sample of 
size s. 

Since E(Y IX) = E(AlX) we obtain from (3.1) 

Thus, one obtains the regression model 

where e is an error with zero mean and finite variance say v2. Thus, the previous values of 
x and y can be considered observations from a linear regression model with x as the con- 

with the usual expectations and variances, given X. 
Assuming that (Xi -x)2is not zero for most Xi while X remains finite, we can show that 

lim var (a+  bXIX, X)  = 0 a.s. (3.6) 
n-m 

Let us now define 
l a  +bX if S,, = B(X,-H)2 + 0, 

$*(Z,X) = 10 if s,, = 0. (3.7)
Then 

d$*)= E[{$*(Z, X)  -$(X)121 

Since S,, = 0 only for degenerate PA(X), we can see that 

lim P(Sxx= 0) = 0, 
n-m 

asaand ,!3trolled variable. One can obtain the least squares estimates of 



while lim E{var (a +bXIX, X, SXx+ 0)~ ( S X X=b 0)) 
n- tm 

g lim E{lim var (a +bX I X, X, SXx=b 0)) = 0. 

Therefore lim r($*) = 0 
n-zco 

and $*(Z, X) is asymptotically optimal. 

4. A NUMERICAL EXAMPLE 

Consider the bolt problem of the introduction. Let us say that the proportion of defectives, 
A, was distributed as a normal variable with mean 0.2 and standard deviation 0.05. Let 
us say further that there were five bolts taken for inspection and the number of defectives 

-

called X. The uniformly minimum variance unbiased estimator would have a mean squared 
error given by 

.\ 
. \ Classical expected variance 

0,0315 
0~0300- '. \ 

o . \  Squared error of 4; . . . . . . .
b ' \  Squared error of 4, -----
2 ., \ 

, \3 0.0200 -
U2 
w . : \ \ 

\ 
\ 

. . . . . . . . . . . . . . . . . .  

0,0023 

Bayes risk 
1 1 1 1 I  I I I I I 

0 , 1 2 3  4 5 10 15 20 25 30 

Number of past experiences 

Fig. 1. A Monte Carlo comparison of two non-parametric empirical Bayes 
estimators with the classical estimator. 

The Bayes estimator E(Alx) has a mean squared error E{var (AlX)} = 0.0023 obtained by 
numerical integration on a high speed computer. Since it is assumed that the distribution 
O(h), the normal here, is actually unknown, one cannot obtain the Bayes estimator. We 
therefore try $(Z, X) and $*(Z, X), which do not require knowledge of @(A). We assume 
that y is the proportion of defectives in a supplementary sample, obtained after each 
estimate is made, of ten bolts. The plot, Fig. 1, was obtained by Monte Carlo simulation 
using 5000 replications. Notice that for as little as three previous experiences both esti- 
mators have a mean squared error smaller than that of the uniformly minimum variance 
unbiased estimator. By thirty previous experiences $(Z, x) has a mean squared error below 
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0.0060, whereas #*(Z, X)  has a mean squared error below 0.0037. Even though the linearity 
assumption does not hold here #*(Z, X)  has a smaller mean squared error than does #(Z, X). 
This may suggest a practical compromise. If the data look fairly linear one should use 
#*(Z, X)  until a sufficient number of previous occurrences have occurred to ensure a t  least 
several values of y for the given value of x, and then switch over to #(Z,X). This would 
ensure asymptotic optimality even when the linearity assumption did not hold. 

5. AN HYPOTHESIS TESTING PROBLEM 

Sometimes one is interested not in estimating the parameter but rather in testing 

H,: A < A*, or A < A*, A* being given, 

against its natural alternative. We can treat the hypothesis with the inequality reversed in 
a similar manner. The possible actions are a,, to accept the hypothesis and al to reject the 
hypothesis. We will use as our loss the function which is zero when we are correct and 
IA- A*/ when we are incorrect. Note there are no fixed type I or type I1errors here. Each 
error is considered equally costly and is weighted by how incorrect it is (Johns, 1957; 
Robbins, 1963; Samuel, 1963). Let 

]A-A*] if i = O ,  A >  A*, 

]A-A*] if i =  1, A <  A*, (5.1) 

otherwise. 

(0 if a(%)= a,, 
Let A(x) = 

1 1  if a(x) = al. 

Then L{~(x),  = 4%) 4- (1-4 % ) )LO(^A) L I ( ~ )  

= LO(4-4 x 1  (Lo(A) -Ll(h)). (5-3) 

It is easily seen that Lo(A)-Ll(A) = A- A* (5.4) 

for all A and either decision anditherefore 

L{a(x), A) = Lo@)-A(x)(A -A*). 

The risk or expected loss can beifound by 

R(a) = E{L,(A)) -E{A (X) (A -A*)) 

= E{Lo(A))-E[A(X) {E(AIX) -A*)]. (5.6) 

A function u*(x) which minimizes this can be seen to be the a*(x) corresponding to 

where $(x) was defined to be E(Alx) in (2.15). The Bayes risk or minimum expected loss 
is then 

R < E{L,(A)) < E{]A-A*I), (5.8) 
which by assumption is finite. The regret in using an arbitrary a(x) with corresponding A(x) 
is then 

r(a) = E[{A*(X)) {#(XI -A*)]. (5.9) 



If we now use the supplementary sample non-parametric empirical Bayes estimate 
$,(z; x ) defined in (2.12)we can define a supplementary sample non-parametric empirical 
Bayes test of hypothesis as the a,(z; x )  such that 

The regret becomes r(a,) = E [ { A * ( X )-An@;X ) ){ $ ( X )-A*)]. (5.1 1)  

As in the estimation problem the introduction of Z causes no difficulties because of the 
independence of Z and (A,X ) .  Note that 

A * ( x ) - A , ( z ; x )  = 1 only when $(x)-A* >, 0 (5.12) 

and A*(x) -A , ( z ;  x )  = - 1  only when $(x)-A* < 0. (5.1 3)  

Note also that A*(x )-A,(z; x )  $. 0 (5.14) 

only when $(x )  -A* 0 , and $,(z; x )  -A* < 0 ,or when $(x )  -A* < 0 and $,(z; x )  -A* > 0. 
Now (5.12), (5.13), and (5.14)imply that 

an) E{l$(X)-A*l )  

G EEI{$(X)-A*}-{$,(Z; X)-A*)l l  

G E{I$n(z;  XI -$ ( X ) I ) .  (5.15) 

By (2.8)and (2.27)we see that we have already proved that 

lim E{$,(Z; X )  -$ ( X ) ) 2= 1. 
n-ern 

This, however, implies that lim r(a,) = 0. Therefore,an@; x )  defined by (5.10)is an asympto- 
tically optimal test of the hypothesis. 

Similarly it is easily shown that under condition (3.1) a: ( z ;x )  defined by 

if $$(z;x )  > A*,( 1A,(z; x )  = 10 if $*(z;X )  < A* 

is also an asymptotically optimal test of hypothesis. 
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